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In this paper, macroscopic quantum tunneling �MQT� effect of Z2 topological order in the Wen-Plaquette
model is studied. This kind of MQT is characterized by quantum tunneling processes of different virtual
quasiparticles moving around a torus. By a high-order degenerate perturbation approach, the effective pseu-
dospin models of the degenerate ground states are obtained. From these models, we get the energy splitting of
the ground states, which are consistent with those obtained from exact diagonalization method.
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I. INTRODUCTION

In quantum mechanics, quantum tunneling effect is a pro-
cess during which quantum particles penetrate barriers,
which are forbidden in classical processes.1 It is Gamov who
pointed out that a single � particle can tunnel through a
potential barrier introducing “macroscopic quantum tunnel-
ing” �MQT� into physics for the first time. Macroscopic
quantum tunneling effects have been widely applied to dif-
ferent research fields such as quantum oscillations between
two degenerate wells of NH3, quantum coherence in one-
dimensional charge-density waves, macroscopic quantum
tunneling effect in ferromagnetic single-domain magnets and
quantum tunneling phenomena in biased Josephson junc-
tions. In general, to find MQT in a system, there must exist
two or more separated “classical” states macroscopically dis-
tinct. As shown in Fig. 1, a quantum particle may take a short
cut from one well to the other without climbing the barrier.

In this paper we will study a new class of MQT—the
MQT in Z2 topological order. At the beginning we give a
brief introduction to Z2 topological order. Topological order
is a new type of quantum order beyond Landau’s symmetry-
breaking paradigm,2–4 which exhibits four universal proper-
ties: �1� all excitations have mass gaps; �2� the quantum de-
generacy of the ground states depends on the genus of the
manifold of the background; �3� there are �closed� string net
condensations; �4� quasiparticles have exotic statistics. All
these properties are robust against local perturbations. Z2 to-
pological order is the simplest topologically ordered state
with three types of quasiparticles: Z2 charge, Z2 vortex, and
fermions.5 Z2 charge and Z2 vortex are all bosons with mu-
tual � statistics between them. The fermions can be regarded
as bound states of a Z2 charge and a Z2 vortex. In the last ten
years, several exactly solvable spin models with Z2 topologi-
cal orders were found such as the Kitaev toric-code model,6

the Wen-plaquette model,5,7 and the Kitaev model on honey-
comb lattice.8

It is known that for Z2 topological orders on a torus, there
always exist four degenerate ground states with the same
energy in thermodynamic limit �the so-called topological de-
generacy�. The different ground states cannot mix into each
other through any local fluctuations. However, in a finite
system, the degeneracy of the ground states can be �partially�
removed via quantum tunneling processes, during which vir-
tual quasiparticles move around the torus.2,6,9–12 Take the en-

ergy splitting from the tunneling process of Z2 vortex, for
example, at first a pair of Z2 vortices is created; then one of
the Z2 vortices propagates all the way around the torus and
annihilates with the other Z2 vortex.

A decade ago, Kitaev pointed out that the degenerate
ground states of a Z2 topological order make up a protected
code subspace �the so-called toric code� free from error.6,8 In
Ref. 9, topological qubit based on the degenerate ground
states of a Z2 topological order has been designed. Then one
can manipulate the degenerate ground states of spin models
by braiding anyons, which has becomes a hot issue
recently.13–16 Recently, an alternative approach to design
topological quantum computation �TQC� is proposed by
manipulating the protected code subspace.11,12 The key point
to manipulate the degenerate ground states is to tune their
MQT effect. Thus it becomes an interesting issue to study the
MQT in Z2 topological order.

In this paper, by using a high-order degenerate perturba-
tive approach, we study the MQT of the degenerate ground
states of Z2 topological order, taking the Wen-plaquette
Model as an example. The remainder of the paper is orga-
nized as follows. In Sec. II, the degenerate ground states of
the Wen-plaquette model is classified by topological closed-
string operators. In Sec. III, the dynamics of quasiparticles
are studied. In Sec. IV, the MQT of the degenerate ground
states of the Z2 topological order are formalized on a torus
with different lattices. The numerical results are given to
compare with the theoretical results. Finally, the conclusions
are given in Sec. V.

II. DEGENERATE GROUND STATES AND THEIR
REPRESENTATION OF STRING OPERATORS

In this section, we study the degenerate ground states of
the Wen-plaquette model. The Hamiltonian of the Wen-
plaquette model is given by

FIG. 1. �Color online� The scheme of a typical macroscopic
quantum tunneling process.
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Ĥ = − g�
i

F̂i, �1�

with

F̂i = �i
x�i+êx

y �i+êx+êy

x �i+êy

y �2�

and g�0. �i
x and �i

y are Pauli matrices on site i. The ground
states of the Wen-plaquette model denoted by Fi�+1 at each
site are known to be an example of Z2 topological state. The
ground-state energy becomes E0=−gN, where N is the num-
ber of the lattice.2,5,7,10

In the topological order of the Wen-plaquette model, there
exist three types of open-string operators Wc�C�, Wv�C� and
Wf�C� corresponding to three types of quasiparticles: Z2
charge, Z2 vortex, and fermion, respectively.3 Here C is an
open loop. To create a Z2-vortex �charge� excitation, one may
draw a string state that connects nearest neighboring even
�odd� plaquettes Wv�C� �or Wc�C��. Such a string state is
created by the following string operator: �C�i

ai, where the
product �C is over all the sites on the string along a loop C
connecting even plaquettes �or odd plaquettes�, ai=y if i is
even and ai=x if i is odd. For a fermionic excitation, the
string operator has a form as Wf�C�=�n�in

ln with a string C
connecting the midpoints of the neighboring links, and in are
sites on the string. lm=z if the string does not turn at site im.
lm=x or y if the string makes a turn at site im. lm=y if the turn
forms a upper-right or lower-left corner. lm=x if the turn
forms a lower-right or upper-left corner. It is obvious that the
fermionic string can be regarded as a bound state of strings
of the Z2 charges and the Z2 vortices, which is Wf�C�
=Wc�C�Wv�C�. If C are closed loops, we get condensed
closed-string operators of the ground states ��0	 as


�0�Wc�C���0	 = 1, 
�0�Wv�C���0	 = 1,


�0�Wf�C���0	 = 1. �3�

One can see the detailed definition of the string operators in
Ref. 3.

To classify the degeneracy of the ground states on an Lx
�Ly lattice with periodic boundary condition �Lx and Ly are
positive integer numbers�, we define three types of topologi-
cal closed-string operators Wc�C�, Wv�C�, and Wf�C�
=Wc�C�Wv�C�, with C denoting topological closed loops. The
word “topological” means that the “big” loops C surround
the torus globally �see Fig. 2�. One can easily check the
commutation relations between the topological closed-string
operators and the Hamiltonian

�H,Wc�C�� = �H,Wv�C�� = �H,Wf�C�� = 0. �4�

For the ground states on a torus of an even-by-even �e�e�
lattice, we can define four types of elementary topological
closed-string operators, Wv�CX�, Wv�CY�, Wf�CX�, and Wf�CY�.
Here CX denotes a closed loop around the torus along ex
direction and CY denotes a closed loop around the torus along
ey direction. Due to the commutation �or anticommutation�
relations between them

�Wv�CX�,Wf�CX�� = 0, �Wv�CY�,Wf�CY�� = 0,

�Wv�CX�,Wv�CY�� = 0, �Wf�CX�,Wf�CY�� = 0,

�Wv�CX�,Wf�CY�� = 0, �Wv�CY�,Wf�CX�� = 0, �5�

we may identify Wv�CX�, Wv�CY�, Wf�CX�, and Wf�CY� by
pseudospin operators �1

x, �2
x �2

z , and �1
z as

Wv�CX� = �1
x

� 1, Wv�CY� → 1 � �2
x ,

Wf�CX� → 1 � �2
z , Wf�CY� → �1

z
� 1 . �6�

Thus other five topological closed-string operators Wc�CX�,
Wc�CY�, Wc�CXY�, Wv�CXY�, and Wf�CXY� are denoted by �1

x

� �2
z , �1

z
� �2

x, �1
y

� �2
y, �1

x
� �2

x, and �1
z

� �2
z , respectively,

Wc�CX� → �1
x

� �2
z , Wc�CY� → �1

z
� �2

x ,

Wc�CXY� → �1
y

� �2
y, Wv�CXY� → �1

x
� �2

x ,

Wf�CXY� → �1
z

� �2
z . �7�

Here CXY is a closed loop around the torus along diagonal
directions. In Table I, the pseudospin representation of the
topological closed-string operators are illustrated.

Then as the eigenstates of �l
z �l=1,2�, the four degenerate

ground states are denoted by �m1 ,m2	= �m1	 � �m2	. For ml
=0, we have

�l
z�ml	 = �ml	 , �8�

and for ml=1 we have

�l
z�ml	 = − �ml	 . �9�

Physically, the topological degeneracy arises from the pres-
ence or the absence of a � flux of fermion through the hole.

FIG. 2. �Color online� The topological closed-string operators
on a torus. The dots denote the crosses of different types of strings.

TABLE I. Pseudospin representation of the topological closed-
string operators on an even-by-even lattice.

Pseudospin operators CX CY CXY

Z2 vortex �1
x

� 1 1 � �2
x �1

x
� �2

x

Z2 charge �1
x

� �2
z �1

z
� �2

x �1
y

� �2
y

Fermion 1 � �2
z �1

z
� 1 �1

z
� �2

z
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The values of ml reflect the presence �ml=1� or the absence
�ml=0� of the � flux in the hole.

For the degenerate ground states on an even-by-odd �e�o�
lattice �Lx is even and Ly is odd�, the situation changes. Be-
cause a Z2 vortex or Z2 charge has to move even steps to go
back to the same plaquette around a torus, we cannot well
define a topological closed-string operator of Z2 vortex or Z2
charge along ey direction, of which the loop consists of odd-
number plaquettes. Then we can only define topological
closed-string operator of Z2 vortex and Z2 charge along ex
direction W�CX� �W�CX�=Wv�CX�=Wc�CX�� and the corre-
sponding fermionic string operator along ey direction Wf�CY�.
Due to the anticommutation relations between W�CX� and
Wf�CY�,

�W�CX�,Wf�CY�� = 0, �10�

we may represent W�CX� and Wf�CY� by pseudospin operators
�1

x and �1
z , respectively,

W�CX� → �1
x, Wf�CY� → �1

z . �11�

Therefore there are two degenerate ground states �m1	 that
are the eigenstates of �1

z . In Table II, the pseudospin repre-
sentation of the topological closed-string operators on e�o
lattice are shown.

Similarly, for the degenerate ground states on an odd-by-
even �o�e� lattice there are also two types of closed-string
operators, W�CY� �W�CY�=Wv�CY�=Wc�CY�� and Wf�CX�,
which can be described by pseudospin operators �2

x and �2
z .

Therefore, the two degenerate ground states on an o�e lat-
tice are denoted by �m2	 which are the eigenstates of �2

z .
For the degenerate ground states on an odd-by-odd �o�o�

lattice, since the total lattice number is odd, we cannot well
define Z2 vortex or Z2 charge globally any more. Instead, we
can only define a mixed topological closed-string operator,
W�CXY�=�C�i

ai, where the product �C is over all the sites on
the string along a diagonal loop C connecting plaquettes. The
index ai=x or y is determined by the position of the
plaquettes. Because W�CXY� anticommutes with Wf�CX� and
Wf�CY�,

�W�CXY�,Wf�CX�� = 0, �W�CXY�,Wf�CY�� = 0, �12�

we may represent W�CXY� and Wf�CX� �or Wf�CY�� by pseu-
dospin operators �x and �z, respectively,

W�CXY� → �x,

Wf�CX� = Wf�CY� → �z.

It is noted that

Wf�CXY� = Wf�CX�Wf�CY� = 1. �13�

Thus the two degenerate ground states on an o�o lattice �m	
are the eigenstates of �z. In Table III, the pseudospin repre-
sentation of the topological closed-string operators on o�o
lattice are shown.

As a result, the degeneracy Q of the ground states of the
Wen-plaquette model on lattices with periodic boundary con-
dition �on a torus� is dependent on the lattice numbers: Q
=4 on e�e lattice, Q=2 on other cases �e�o, o�e, and o�o
lattices�.2,5,7,10–12

III. PROPERTIES OF QUASIPARTICLES OF THE
WEN-PLAQUETTE MODEL

In this section we study the properties of the quasiparti-
cles of the Wen-plaquette model. In this model, Z2 vortex is
defined as Fi=−1 at even subplaquette and Z2 charge is Fi
=−1 at odd subplaquette. The energy gaps of Z2 charge and
Z2 vortex are 2g. The fermions that are the bound states of a
Z2 charge and a Z2 vortex on two neighboring plaquettes
have an energy gap of 4g. All quasiparticles in such an ex-
actly solvable model have flat bands. The energy spectrums
are Ev=Ec=2g for Z2 vortex and Z2 charge, Ef =4g for fer-
mions, respectively. In other words, the quasiparticles cannot
move at all. In particular, there exist two types of fermions:
the fermions on the vertical links and the fermions on the
parallel links.

Under the perturbation

HI = hx�
i

�i
x + hz�

i

�i
z, �14�

the quasiparticles �Z2 vortex, Z2 charge, and fermion� begin
to hop.11,12,14,17–21 The term hx�i�i

x drives the Z2 vortex, Z2
charge, and fermion hopping along diagonal direction êx
− êy �see Fig. 3�a��. For example, for a Z2 vortex living at i

TABLE II. Pseudospin representation of the topological closed-
string operators on an even-by-odd lattice.

Pseudospin operators CX CY CXY

Z2 vortex �1
x �1

x

Z2 charge �1
x �1

x

Fermion 1 �1
z �1

z

TABLE III. Pseudospin representation of the topological closed-
string operators on an odd-by-odd lattice.

Pseudospin operators CX CY CXY

Z2 vortex �Z2 charge� �x

Fermion �z �z 1

(b)(a)

FIG. 3. �Color online� The hoppings of Z2 vortex, Z2 charge,
and fermions. The shadow plaquettes, the striped plaquettes, and the
dots on the links represent Z2 vortices, Z2 charges, and fermions,
respectively.
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plaquette Fi=−1, when �i
x acts on i+ êx site, it hops to i

+ êx− êy plaquette denoted by Fi+êx−êy
=−1,

Fi = − 1 → Fi = + 1, Fi+êx−êy
= + 1 → Fi+êx−êy

= − 1.

�15�

A pair of Z2 vortices at i and i+ êx− êy plaquettes can be
created or annihilated by the operation of �i

x,

Fi = + 1 → Fi = − 1, Fi+êx−êy
= + 1 → Fi+êx−êy

= − 1.

�16�

The term hz�i�i
z drives fermion hopping along êx and êy

directions without affecting Z2 vortex and Z2 charge: fermi-
ons on the vertical links move along vertical directions and
fermions on the parallel links move along parallel directions.
With the help of the term hx�i�i

x, the two types of fermions
are mixed and the fermions may turn round from vertical
links to parallel links �see Fig. 3�b��.

A fact is that the topological closed-string operators can
be considered as quantum tunneling processes of virtual qua-
siparticle moving along the same loops. Let us take the quan-
tum tunneling process of Z2 vortex as an example; at first a
pair of Z2 vortices are created. One Z2 vortex propagates
around the torus driven by operators �i

x and annihilates with
the other Z2 vortex. Then a string of �i

x is left on the tunnel-
ing path, which is just the topological closed-string operator
Wv�C�. Such a process effectively adds a unit of a � flux to
one hole of the torus and changes ml by 1 �from the case of
ml=1 to that of ml=0, or vice versa�.

IV. MACROSCOPIC QUANTUM TUNNELING EFFECTS
OF THE DEGENERATE GROUND STATES

It is known that the degenerate ground states of Z2 topo-
logical orders have the same energy in the thermodynamic
limit. The different ground states cannot mix with each other
through any local fluctuations. However, in a finite system,
the degeneracy of the ground states can be �partially� re-
moved due to quantum tunneling processes, during which
virtual quasiparticles move around the torus.2,6,9,11,12 In gen-
eral cases, one will get large energy gaps for all quasiparti-
cles and very tiny energy splittings of the degenerate ground
states 	E. Based on such condition, we may ignore high-
energy excited states and consider only the degenerate
ground states. Thus in the following parts we only focus on
the ground states that are a four-level �or two-level� system.

A. High-order degenerate perturbation theory

To solve quantum tunneling problems, people have devel-
oped many approaches including the well-known WKB
�Wentzel, Kramers and Brillouin� method and the instanton
approach lately. However, both above approaches are based
on semiclassical approximation and are not available to the
MQT of Z2 topological order. Instead, in this part, we de-
velop a high-order degenerate perturbative approach to cal-
culate the MQT.

The Hamiltonian of the Wen-plaquette model under the
external field has a form as

Ĥ = Ĥ0 + ĤI �17�

in which Ĥ0=−g�i�i
x�i+êx

y �i+êx+êy

x �i+êy

y is the unperturbation

term and ĤI=hx�i�i
x+hz�i�i

z is the small perturbation one.
For simplicity, we consider the quantum tunneling process
between two degenerate ground states �m	 and �n	,

�m	 ⇔ �n	 . �18�

According to the Gell-Mann-Low theory, we define a

transformation operator ÛI�0,−
� as

UI�0,− 
� = T exp− i�
−


0

ĤI��t��dt�� , �19�

where

ĤI��t� = eiĤ0tĤIe
−iĤ0t. �20�

Here T is a time-ordering operator and �=1. Then the trans-

formation operator ÛI�0,−
� in Eq. �19� can be written as

ÛI�0,− 
��m	 = �
j=0




ÛI
�j��0,− 
��m	 , �21�

where

ÛI
�0��0,− 
��m	 = �m	 ,

ÛI
�1��0,− 
��m	 = − i�

−


0

ĤI��t�dt�m	 =
1

E0 − Ĥ0

ĤI�m	 ,

ÛI
�2��0,− 
��m	 = − i�

−


0

ĤI��t�ÛI
�1��0,− 
�dt�m	

=
1

E0 − Ĥ0

ĤI
1

E0 − Ĥ0

ĤI�m	 ,

ÛI
�j�0��0,− 
��m	 =  1

E0 − Ĥ0

ĤI� j

�m	 . �22�

The element of the transformation matrix from the state �m	
to �n	 becomes


n�ÛI�0,− 
��m	

and the corresponding energy is obtained as

E = 
n�ĤÛI�0,− 
��m	 = E0 + �E , �23�

where E0 is the eigenvalue of the Hamiltonian Ĥ0 of �m	.
For the tunneling process from �m	 to �n	, a quasiparticle

will move around the torus that leads to topological closed-
string operator behind. So in the summation of j, the domi-
nating term is labeled by j=L−1. L is the length of the loop
of a topological string operator W�C��, where =v, c, or f
and �=X, Y, or XY. Then considering the tunneling process
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corresponding to W�C��, we obtain the perturbative energy
as

�E = 
n�ĤIÛI�0,− 
��m	 = 
n�ĤI�
j=0




ÛI
�j��0,− 
��m	

= 
n�ĤIÛI
�L−1��0,− 
��m	 . �24�

Now it is noting that the operator ĤIÛI
�L−1��0,−
� is propor-

tional to a topological string operator W�C��. In general, the
perturbative energy �E is proportional to

N
�teff�L

����L−1 �25�

with the lattice number N and the tunneling path length L.
Here �� and teff are the energy gap and the hopping ampli-
tude of the quasiparticle, respectively.

Considering all tunneling processes, we may denote the
ground-state energies as a four-by-four matrix �for the four
degenerate ground states on e�e lattice� or a two-by-two
matrix �for the two degenerate ground states on e�o, o�e,
and o�o lattices�,

�E = �
m,n


n�ĤIÛI
�L−1��0,− 
��m	 . �26�

Finally we can diagonalize the four-by-four or two-by-two
matrices and obtain the energy splitting.

In the following parts, by using this high-order perturba-
tive approach we study the tunneling splitting between topo-
logical degenerate ground states. In the sense of “perturba-
tive,” such approach can only be applied to the cases under a
small external field. When the ratio hx

g �or hz

g � is large, our
approach is not reliable. Near the phase boundary of the
topological ordered state, the energy gaps of one or more
quasiparticle disappear, ��→0. According to Eq. �25�, one

gets a diverge perturbative energy �E�N
�teff�L

����L−1 →
. So by
the approach we cannot study the quantum tunneling effect
near the quantum phase transition out of the topological
order.19,21–24

B. Macroscopic quantum tunneling effect of the degenerate
ground states on o�o lattice

First, we study the MQT of the two degenerate ground
states on an Lx�Ly �Lx and Ly are odd numbers and Lx
�Ly� lattice. For simplicity, we use �↑ 	 and �↓ 	 to describe
the two degenerate ground states �m=0	 and �m=1	, respec-
tively. Therefore the two ground states are mapped onto

quantum states of pseudospin �̂. Under the perturbation, ĤI
=hx�i�i

x+hz�i�i
z, two types of quantum tunneling processes

dominate—the one that Z2 vortex �or Z2 charge� propagates
around the torus along diagonal direction and the other that
fermion propagates around the torus along ey direction.

For the first tunneling process, a virtual Z2 vortex �or Z2
charge� will run around the torus as long as a path with
length L0 that is equal to

LxLy

� . Here � is the maximum com-
mon divisor for Lx and Ly. For example, on a 3�3 lattice,
we get L0= 3�3

3 =3; on a 3�5 lattice, we get L0= 5�3
1 =15.

From Eq. �26�, one may obtain the energy splitting 	E of
the two ground states as

�E = UI
�L� = 
↑�ĤI 1

E0 − Ĥ0

ĤI�L0−1

�↓	 . �27�

Due to the translation invariance, to calculate � 1

E0−Ĥ0
ĤI��↓ 	

= � hx

E0−Ĥ0
�i�i

x��↓ 	, we can choose site i as the starting point of

the tunneling process and get

 1

E0 − Ĥ0

ĤI��↓	 → LxLy hx

E0 − Ĥ0

�i
x��↓	

= LxLy hx

E0 − Ĥ0
���i	 , �28�

where ��i	 is the excited state of two Z2 vortices �or Z2
charges� at plaquettes i−ey and i−ex with an energy E0+4g

�see Fig. 4�a��. From Ĥ0��i	= �E0+4g���i	, we have

 1

E0 − Ĥ0

ĤI��↓	 = LxLy hx

− 4g���i	 .

(b)

(a)

FIG. 4. �Color online� Generation and hopping of Z2 vortex. The
shadow plaquettes represent Z2 vortices.
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In second step, one Z2 vortex �or Z2 charge� moves one
step, we get

 hx

E0 − Ĥ0

�
i

�i
x�2

�↓	 =  hx

E0 − Ĥ0

�
i

�i
x�LxLy hx

− 4g���i	

= LxLy hx

− 4g� hx

E0 − Ĥ0

�
i

�i
x���i	

= LxLy hx

− 4g� hx

E0 − Ĥ0

�i+ex−ey

x ���i	

= LxLy hx

− 4g� hx

− 4g���i�	 , �29�

where ��i�	 is the excited state of two Z2 vortices �or Z2
charges� at plaquettes i+ex−2ey and i−ex. See Fig. 4�b�.

In third step, one Z2 vortex �or Z2 charge� moves two
steps, we get

 hx

E0 − Ĥ0

�
i

�i
x�3

�↓	 =  hx

E0 − Ĥ0

�
i

�i
x�2

LxLy hx

− 4g
���i	

=  hx

E0 − Ĥ0

�
i

�i
x�LxLy hx

− 4g
� hx

− 4g
�

���i�	 = LxLy hx

− 4g
� hx

− 4g
� hx

− 4g
�

���i�	 , �30�

where ��i�	 is the excited state of two Z2 vortices �or Z2
charges� at plaquettes i+2ex−3ey and i−ex.

Then step by step, one Z2 vortex �or Z2 charge� moves
around the torus. When the Z2 vortex �or Z2 charge� goes
back to its starting point and annihilates with the other, the
original quantum state �↓ 	 changes into �↑ 	. Finally we get
the energy splitting

	 = 2�E = 2UI
�L� = 2
↑�ĤI 1

E0 − Ĥ0

ĤI�L0−1

�↓	

= 2 � LxLy
�hx�L0

�− 4g�L0−1 = 8LxLyg hx

4g�L0

. �31�

It is noted that L0−1 is an even number.
Because the quantum tunneling process of Z2 vortex �or

Z2 charge� acts on the quantum states � �↑	
�↓	 � as �x

�↓	
�↑	 � = �x�↑	

�↓	
� , �32�

we obtain the effective pseudospin Hamiltonian due to the
contribution of Z2 vortex �or Z2 charges� as

Ĥeff =
	

2
��↑	
↓� + �↓	
↑�� = Jx�

x �33�

where Jx=	 /2.11,12

For the second tunneling process, a virtual fermion will
move around the torus along direction êy with length Ly �it is
noted that due to Lx�Ly, the length of tunneling path along

êx direction is longer�. See Fig. 5. Such a tunneling process
changes the quantum states � �↑	

�↓	 � turn into � �↑	
−�↓	 �=�z� �↑	

�↓	 �. The
extra sign of the state �↓ 	 comes from the presence of � flux
of fermionic quasiparticles through the holes of the torus.
From Eq. �26�, we can get the energy shift of the state �↓ 	 as

�E = �
j=0





↓�ĤI 1

E0 − Ĥ0

ĤI� j

�↓	 = LxLy
�hz�Ly

�8g�Ly−1 �34�

with an even number Ly −1. Through the same approach, we
get the energy shift 	E of �↓ 	 is equal to −LxLy

�hz�Ly

�8g�Ly−1 . Then
an energy difference � of the two ground states is obtained as

� = 2�E = 16LxLyg hz

8g
�Ly

. �35�

Finally the two-level quantum system of the two degen-
erate ground states on an o�o lattice can be described by a
simple effective pseudospin Hamiltonian

Ĥeff =
	

2
��↑	
↓� + �↓	
↑�� +

�

2
��↑	
↑� − �↓	
↓�� = Jx�

x + Jz�
z,

�36�

where Jx=	 /2 and Jz=� /2. By diagonalizing the effective
Hamiltonian matrix, we can get the eigenvalues of the two
ground states

E� = ��	

2
�2

+ �

2
�2

. �37�

The total-energy splitting becomes

	E = E+ − E− = 2�	

2
�2

+ �

2
�2

. �38�

For the Wen-plaquette model under external field along x
direction, the total-energy splitting 	E is reduced into 	

=8LxLyg� hx

4g �L0. On the other hand, for the Wen-plaquette
model under external field along z direction, the total-energy
splitting 	E is �=16LxLyg� hz

8g �Ly.

FIG. 5. �Color online� Tunneling path of virtual fermion along
êy direction on an 5�5 lattice �The dots on the links denote the
fermions�.
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C. Macroscopic quantum tunneling effect of the degenerate
ground states on e�o lattice

Second, we study the MQT of the two degenerate ground
states on an Lx�Ly �Lx is an even number and Ly is an odd
number� lattice.25 Now we map the twofold-degenerate
ground states �m1=0	 and �m1=1	 onto quantum states of the
pseudospin �̂1 as �↑ 	1 and �↓ 	1, respectively. Under the per-

turbation, ĤI=hx�i�i
x+hz�i�i

z, there are two types of quan-
tum tunneling processes—virtual Z2 vortex �or Z2 charge�
propagating along êx− êy directions around the torus and vir-
tual fermion propagating along êy direction around the torus.

For the virtual Z2 vortex �or Z2 charge� propagating along
êx− êy directions around the torus, the energy splitting 	 can
be obtained by the high-order degenerate-state perturbation
theory as

	 = 2
↑�1ĤI 1

E0 − Ĥ0

ĤI�L0−1

�↓	1 = 2LxLy
�hx�L0

�− 4g�L0−1 .

�39�

Because the quantum tunneling process of Z2 vortex �or Z2

charge� plays a role of �1
x on the quantum states �

�↑	1

�↓	1
� as

�
�↓	1

�↑	1
�=�1

x�
�↑	1

�↓	1
�, we obtain the effective pseudospin Hamil-

tonian due to the contribution of Z2 vortex �or Z2 charge� as

Ĥeff =
	

2
��↑	1
↓�1 + �↓	1
↑�1� = Jx�1

x , �40�

where Jx=	 /2.
For the tunneling process of fermion propagating around

the torus along direction êy, we obtain the energy difference
� of the two ground states as

� = 2	E = 16LxLyg hz

8g
�Ly

. �41�

The length of the tunneling path is Ly which is an odd num-
ber. Such tunneling process plays a role of �1

z .
Finally the two-level quantum system of the two degen-

erate ground states on an e�o lattice can be described by

Ĥeff = Jx�1
x + Jz�1

z , �42�

where Jx=	 /2 and Jz=� /2. The total-energy splitting now
becomes

	E = E+ − E− = 2�	

2
�2

+ �

2
�2

. �43�

In Figs. 6 and 7, we plot the numerical results from the exact
diagonalization technique of the Wen-plaquette model on dif-
ferent o�o and e�o lattices. Table IV shows the tunneling
lengths L0 from the numerical results �the numbers in the
brackets are the theoretical predictions�, which indicate that
our theoretical results are consistent with the numerical re-
sults from exact diagonalization approach.

D. Macroscopic quantum tunneling effect of the degenerate
ground states on e�e lattice

Third, we study the MQT of the four degenerate ground
states on an Lx�Ly �Lx and Ly are even numbers with Lx

�Ly� lattice. We denote the four degenerate ground states
�m1 ,m2	= �0,0	, �1,0	, �0,1	, and �1,1	 by the quantum states

of pseudospin �̂1 and �̂2. Under the perturbation, ĤI
=hx�i�i

x+hz�i�i
z, there are five types of quantum tunneling

processes—virtual Z2 vortex propagating along êx− êy direc-
tion around the torus, Z2 charge propagating along êx− êy
direction around the torus, and virtual fermion propagating
along êx, êy, and êx− êy direction around the torus, respec-
tively. We will calculate the ground-state energy splitting
from the degenerate perturbation approach one by one.

In the first step we study the quantum tunneling process of
Z2 vortex propagating along êx− êy direction around the
torus. After such tunneling process, the quantum states

�
�0,0	
�1,0	
�0,1	
�1,1	

�
turn into

FIG. 7. �Color online� The energy splitting between the two
degenerate ground states of the Wen-plaquette model in an external
field along z direction �g=1�. Here N�M denotes a N�M lattice.

FIG. 6. �Color online� The energy splitting between the two
degenerate ground states of the Wen-plaquette model in an external
field along x direction �g=1�. Here N�M denotes a N�M lattice.
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�
�0,0	
�1,0	
�0,1	
�1,1	

�→�
�1,1	
�0,1	
�1,0	
�0,0	

� = �1
x

� �2
x�

�0,0	
�1,0	
�0,1	
�1,1	

� . �44�

Thus we may use the pseudospin operator �1
x

� �2
x to denote

the tunneling process. The effective pseudospin Hamiltonian
due to the contribution of Z2 vortex is obtained as

Ĥeff = Jxx�1
x

� �2
x , �45�

where Jxx=LxLy
�hx�L0

�−4g�L0−1 . Similar to the results in above sec-

tion, the length L0 of the tunneling path is equal to
LxLy

� ,
where � is the maximum common divisor for Lx and Ly.

In the second step we study the quantum tunneling pro-
cess of Z2 charge propagating along êx− êy directions around
the torus. We may use the pseudospin operator �1

y
� �2

y to
denote this tunneling process, of which the effective pseu-
dospin Hamiltonian is obtained as

Ĥeff = Jyy�1
y

� �2
y , �46�

where Jyy =LxLy
�hx�L0

�−4g�L0−1 and L0=
LxLy

� .
In the third step we study the quantum tunneling process

of fermions propagating along êx and êy directions around
the torus, of which the pseudospin operators correspond to
1 � �2

z and �1
z

� 1, respectively. Then the effective pseudospin
Hamiltonian due to the contribution of the two quantum tun-
neling processes is obtained as

Ĥeff = h̃1
z��1

z
� 1� + h̃2

z�1 � �2
z� , �47�

where h̃1
z =−8LxLyg� hz

8g �Lx and h̃2
z =−8LxLyg� hz

8g �Ly.
In the last step we study the quantum tunneling process of

fermions propagating along êx− êy direction around the torus,
of which the pseudospin operator corresponds to �1

z
� �2

z , re-
spectively. Now there are a lot of tunneling paths with same
length 2L0. Different tunneling paths can be labeled by the
positions of corners, at which the fermions make a turn
round from vertical links to parallel links �or parallel links to
vertical links�. For a path with 2k corners �k is an positive
integer number�, the topological closed-string operator can
be written as

Wf�CXY� = �i
z�i+1

z . . . � j−1
z � j

x� j+1
z . . . �2L0−2

x �2L0−1
z �2L0

z

�48�

with the site i= �ix , iy� and a neighboring site i+1. See Fig. 8.
Along the closed loops, each operator � j

x corresponds to a

corner. Therefore, the number of paths with 2k corners that is
equal to the power of hx in 	E is obtained as

CL0−1
k =

�L0 − 1�!
k ! �L0 − k − 1�!

. �49�

It is noted that for any path, there are at least two corners.
Then after considering the tunneling processes of all possible
paths, the matrix element of �1

z
� �2

z is obtained as

Jzz = � = LxLyCL0−1
1 �2hx�2�hz�2L0−2

�− 8g�2L0−1

+ LxLyCL0−1
2 �2hx�4�hz�2L0−4

�− 8g�2L0−1 + . . .

+ LxLyCL0−1
k �2hx�2k�hz�2L0−2k

�− 8g�2L0−1 + . . . + LxLy
�2hx�2L0

�− 8g�2L0−1

= − LxLy
��2hx�2 + �hz�2�L0 − �hz�2L0

�8g�2L0−1 . �50�

Finally we derive an effective pseudospin Hamiltonian of
the four ground states as

Ĥeff � Jxx��1
x

� �2
x� + Jyy��1

y
� �2

y� + Jzz��1
z

� �2
z� + h̃1

z��1
z

� 1�

+ h̃2
z�1 � �2

z� �51�

which is equal to

TABLE IV. The tunneling lengths L0 from the numerical results
�the numbers in the brackets are the theoretical predictions�. hx

means the external field along x direction and hz means the external
field along z direction. Here N�M denotes a N�M lattice.

L0 3�3 2�5 3�4 3�5

hx 2.98312�3� 9.84653�10� 12.10754�12� 15.01707�15�
hz 3.06994�3� 4.83737 �5� 3.03164 �3� 3.01557 �3�

FIG. 8. �Color online� Tunneling path of virtual fermions on an
6�6 lattice with four corners �the dots on the links denote
fermions�.
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Ĥeff =�
Jzz + h1

z̃ + h2
z̃ 0 0 Jxx − Jyy

0 − Jzz + h1
z̃ − h2

z̃ Jxx + Jyy 0

0 Jxx + Jyy − Jzz − h1
z̃ + h2

z̃ 0

Jxx − Jyy 0 0 Jzz − h1
z̃ − h2

z̃
� . �52�

The coefficients of Ĥeff are given by

Jxx = Jyy = LxLy
�hx�L0

�− 4g�L0−1 ,

Jzz = − LxLy
��2hx�2 + �hz�2�L0 − �hz�2L0

�8g�2L0−1 ,

h̃1
z = − 8LxLyg hz

8g
�Lx

, h̃2
z = − 8LxLyg hz

8g
�Ly

. �53�

By diagonalizing the effective Hamiltonian, we get the ener-
gies of the ground states as

E1 = Jzz − ��h̃1
z − h̃2

z�2 + 4Jxx
2 ,

E2 = Jzz + ��h̃1
z − h̃2

z�2 + 4Jxx
2 ,

E3 = Jzz + h̃1
z + h̃2

z ,

E4 = Jzz − h̃1
z − h̃2

z . �54�

Because the parameter Jzz is always much smaller than oth-

ers as �Jzz�� �Jxx�, �Jyy�, �h̃1
z �, and �h̃2

z �, we may simplify Ĥeff
as11

Ĥeff � Jxx��1
x

� �2
x� + Jyy��1

y
� �2

y� + h̃1
z��1

z
� 1� + h̃2

z�1 � �2
z�

�55�

and obtain the energies as

E1 � − ��h̃1
z − h̃2

z�2 + 4Jxx
2 ,

E2 � ��h̃1
z − h̃2

z�2 + 4Jxx
2 ,

E3 � h̃1
z + h̃2

z ,

E4 � − h̃1
z − h̃2

z . �56�

As the external field increases �hx�0 and hz�0�, the single
energy level of the initial four degenerate ground states split
into four energy levels.

If we apply the external field along z direction, the four
energy levels are

E1 � − h̃1
z + h̃2

z , E2 � h̃1
z − h̃2

z ,

E3 � h̃1
z + h̃2

z , E4 � − h̃1
z − h̃2

z , �57�

where h̃1
z =−8LxLyg� hz

8g �Lx and h̃2
z =−8LxLyg� hz

8g �Ly. In the an-

isotropic limit, Lx�Ly, we have �h̃1
z �� �h̃2

z �. In this case, the
initial four degenerate ground states split into two groups,

E1� h̃2
z , E2�−h̃2

z , E3� h̃2
z , and E4�−h̃2

z . In each group, there
are two energy levels, of which the energy splitting E1−E3

=−2h̃1
z is very tiny. In contrast, the energy “gap” between the

two groups E1−E2=2h̃2
z is larger. One can see the energy

levels of the Wen-plaquette model in external field along z
direction on 2�6 lattice �g=1� in Fig. 9. In the isotropic

case, Lx=Ly, we have h̃1
z = h̃2

z . In this case, the initial four

degenerate ground states split into E1=E2=0, E3=2h̃1
z , and

E4=−2h̃1
z . One can see the energy levels of the Wen-

plaquette model in external field along z direction on 4�4
lattice �g=1� in Fig. 10.

On the other hand, if we apply the external field along x
direction, the four energy levels become

E1 � − 2Jxx, E2 � 2Jxx,

E3 = E4 = Jzz � 0, �58�

where Jxx=LxLy
�hx�L0

�−4g�L0−1 and Jzz=−8LxLyg� hx

8g �2L0. Now the
initial four degenerate ground states split into three energy
levels. One can see the energy levels of the Wen-plaquette

FIG. 9. �Color online� The ground-state energies of the Wen-
plaquette model in an external field along z direction on 2�6 lattice
�g=1�.
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model in an external field along x direction on 4�4 lattice
�g=1� in Fig. 11.

In addition, one may consider the MQT under a more
general perturbation

ĤI = hx�
i

�i
x + hy�

i

�i
y + hz�

i

�i
z. �59�

For an external field of hx�0, hy �0, and hz�0, all quasi-
particles �Z2 vortex, Z2 charge, and fermion� can move along
êx, êy, and êx� êy directions freely. Therefore, to calculate
the MQT of the degenerate ground states on an e�e lattice,
all the nine types of quantum tunneling processes should be
considered. The corresponding effective pseudospin Hamil-
tonian of the four ground states turns into

Heff = Jxx��1
x

� �2
x� + Jyy��1

y
� �2

y� + Jzz��1
z

� �2
z� + Jzx��1

z
� �2

x�

+ Jxz��1
x

� �2
z� + h̃1

x��1
x

� 1� + h̃2
x�1 � �2

x� + h̃1
z��1

z
� 1�

+ h̃2
z�1 � �2

z� , �60�

where Jxx, Jyy, Jzz, Jzx, Jxz, h̃1
x, h̃2

x, h̃1
z , and h̃2

z are determined
by the energy splitting of the degenerate ground states from
the nine tunneling processes.11,12 This issue �the MQT of Eq.
�59�� will be studied elsewhere.

V. CONCLUSION

In this paper, we study MQT effect of Z2 topological order
in the Wen-Plaquette model that is characterized by the quan-
tum tunneling processes of different virtual quasiparticles
moving around the torus. By focusing on the degenerate
ground states, we get their effective pseudospin models. The
coefficients of these effective pseudospin models are ob-
tained by a high-order degenerate perturbation approach.
With the help of the effective pseudospin models, the ener-
gies of the ground states are calculated and the results are
consistent with those obtained from exact diagonalization
numerical technique.

In the future, the approach will be applied onto the MQTs
of Z2 topological order in other models such as the Kitaev
toric-code mode and the Kitaev model on honeycomb lattice.
By learning the nature of the MQT of Z2 topological orders
in different models, one may know how to manipulate the
degenerate ground states by controlling the external field and
then do topological quantum computation within the degen-
erate ground states.11,12
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